

HCN-003-001544 Seat No.

B. Sc. (Sem. V) (CBCS) Examination

October - 2017

S-503 : Statistics

(Statistical Inference)

(New Course)

Faculty Code : 003 Subject Code: 001544

Time : $2\frac{1}{2}$ Hours]

[Total Marks : 70

Instructions : (1) Q.1 carries 20 marks.

- Q. 2 and 3 each carries 25 marks. (2)
- Students are allowed to use their own scientific (3)calculator.

1 Fill in the blanks and short questions : (Each 1 mark) 20

- An estimator T_n which is most concentrated about (1)parameter θ is the _____ estimator. Estimation is _____ if we have a purposive sample.
- (2)
- If $X_1, X_2, X_3, ..., X_n$ be a random sample, the expression (3)

$$\sum \frac{x_i}{n}$$
 is an _____

- A single value of an estimator for a population parameter (4) θ is called its _____ estimate.
- If T_n is an estimator of a parametric function $\tau(\theta)$, the (5)mean square error of T_n is equal to _____
- If $T_n = t_n(X_1, X_2, X_3, ..., X_n)$, an estimator of $\tau(\theta)$, is (6)such that $\lim_{n \to \infty} [T_n - \tau(\theta)]^2 = 0$, T_n is said to be _____ consistent.
- An estimator is efficient if its variance is _____ (7)than the variance of any other estimator.
- If a statistic $T = t(X_1, X_2, X_3, ..., X_n)$ provides as much (8)information as the random sample $X_1, X_2, X_3, ..., X_n$ could provide, then T is a
- (9)If $f(x;\theta)$ is a family of distributions and h(x) is any statistic such that E[h(x)] = 0, then $f(x;\theta)$ is called
- (10) A maximum likelihood estimate is not necessarily

HCN-003-001544]

- (11) If an MVB unbiased estimator exists, estimator provides it.
- (12) Maximum likelihood estimator $\frac{\sum (x_i \overline{x})^2}{n}$ of the variance σ^2 of a normal density $f(x;\mu,\sigma^2)$ is a _____ (13) For a rectangular distribution $\frac{1}{(\beta - \alpha)}$ the maximum likelihood estimates of α and β are _____ and respectively. (14) The estimation of a parameter by the method of minimum Chi-square utilizes ______ statistic. (15) The estimators obtained by the method of minimum Chi-square and maximum likelihood estimator are (16) If $E(T_n) > \theta$, the parameter value T_n is said to be (17) An unbiase estimator is not necessarily _____ (18) If mean \overline{x} of a sample drawn from a Normal population is a maximum likelihood estimator, \overline{x} is a _____ estimator of population mean. (19) Sample mean is an _____ and _____ estimate of population mean. (20) If T_1 and T_2 are two MVU estimator for $T(\theta)$, then Write the answers of any **Three** : (Each of 2 marks) (A) Define Consistency (1)Show that $\sum x_i$ is a sufficient estimator of θ for (2)Geometric distribution. (3)Define Complete family of distribution (4)Define Uniformly Most Powerful Test (UMP test) Obtain an unbiased estimator of θ by for the (5)following distribution $f(x:\theta) = \frac{1}{\Theta}; 0 \le x < \Theta$ (6) **Define Efficiency** (B) Write the answers any of Three : (Each of 3 marks) Let $x_1, x_2, x_3, ..., x_n$ be random sample taken from (1)

6

9

 $N(\mu,\sigma^2)$ then find sufficient estimator of μ and σ^2 . HCN-003-001544] [Contd... 2

2

- (2) $\frac{x}{n}$ is a consistent estimator of p for Binomial distribution.
- (3) Obtain MVUE of parameter θ for Poisson distribution.
- (4) A is more efficience than B then prove that Var(A) + Var(B A) = Var(B)
- (5) Given a random sample $x_1, x_2, x_3, ..., x_n$ from distribution with p.d.f. $f(x; \theta) = \frac{1}{\theta}; 0 \le x \le \theta$, Obtain power of the test for testing $H_0: \theta = 1.5$ against $H_1: \theta = 2.5$ where $c = \{x: x \ge 0.8\}$.
- (6) Obtain Operating Characteristic (OC) function of SPRT.
- (C) Write the answers of any **Two** : (Each of 5 marks) 10
 - (1) State Neyman-Pearson Lemma and prove it.
 - (2) Estimate α and β in the case of Gamma distribution by the method of moments

$$f(x; \alpha, \beta) = \frac{\alpha^{\beta}}{\Gamma\beta} e^{-\alpha x} x^{\beta-1}; x \ge 0, \alpha \ge 0$$

- (3) Construct SPRT of Poisson distribution for testing $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1 (> \lambda_0)$. Also obtain OC function of SPRT.
- (4) Given a random sample x₁, x₂, x₃,...x_n from distribution with p.d.f. f(x; θ) = θe^{-θx}; 0 ≤ x ≤ ∞, θ > 0 Use the Neyman Pearson Lemma to obtain the best critical region for testing H₀: θ = θ₀ against H₁: θ = θ₁.
 (5) Obtain Likelihood Ratio Test :
 - Let $x_1, x_2, x_3, ..., x_n$ random sample taken from $N(\mu, \sigma^2)$. To test $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$.

3 (A) Write the answers any **Three** : (Each of 2 marks)

- (1) Define Unbiasedness
- (2) Define Sufficiency
- (3) Define Minimum Variance Bound Estimator (MVBE)
- (4) Define Most Powerful Test (MP test)
- (5) Define ASN function of SPRT

HCN-003-001544]

[Contd...

6

- (6) Show that sample mean is more efficient than sample median for Normal distribution.
- (B) Write the answer any **Three** : (Each 3 marks)
 - (1) Obtain unbiased estimator of $\frac{kq}{p}$ of Negative Binomial distribution.
 - (2) Obtain an unbiased estimator of population mean of \aleph^2 distribution.

(3) Prove that
$$E\left(\frac{\partial \log L}{\partial \theta}\right)^2 = -E\left(\frac{\partial^2 \log L}{\partial \theta^2}\right)$$

- (4) Obtain estimator of θ by method of moments in the following distribution $f(x;\theta) = \theta x^{\theta-1}; 0 \le x \le 1$ *If*
- (5) Use the Neyman Pearson Lemma to obtain the best critical region for testing $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1$ in the case of Poisson distribution with parameter λ .

(6) Let P be the probability that coin will fall head in a single toss in order to test $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$. The coin is tossed 6 times and H_0 is rejected if more than 4 head are obtained, Find the probability of type-I error, type-II error and power of test.

(C) Write the answers any Two : (Each of 5 marks)
(1) State Crammer-Rao inequality and prove it.

9

- (2) Obtain MVBE of σ^2 for Normal distribution.
- (3) If T_1 and T_2 be two unbiased estimator of θ with variance σ_1^2, σ_2^2 and correlation p, what is the best unbiased linear combination of T_1 and T_2 and what is the variance of such a combination ?

$$P(X = x) = \frac{1}{2} \frac{e^{-m_1} m_1^x}{x!} + \frac{1}{2} \frac{e^{-m_2} m_2^x}{x!}; 0, 1, 2, \dots$$
 Show

that the estimator for m_1 and m_2 by the method

of moment are
$$\mu'_1 \pm \sqrt{\mu'_2 - \mu'_1 - (\mu'_1)^2}$$

(5) Obtain OC function for SPRT of Binomial distribution for testing $H_0: p = p_0$ against $H_1: p = p_1 (> p_0)$

HCN-003-001544]